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Abstract

We suggest using “realized volatility” as a volatility proxy to aid in model-based
multivariate bond yield density forecasting. To do so, we develop a general estimation
approach to incorporate volatility proxy information into dynamic factor models with
stochastic volatility. The resulting model parameter estimates are highly efficient,
which one hopes would translate into superior predictive performance. We explore this
conjecture in the context of density prediction of U.S. bond yields by incorporating
realized volatility into a dynamic Nelson-Siegel (DNS) model with stochastic volatility.
The results clearly indicate that using realized volatility improves density forecasts
relative to popular specifications in the DNS literature that neglect realized volatility.
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1 Introduction

Time-varying volatility exists in U.S. government bond yields. In this paper, we introduce

volatility proxy data in the hopes of better capturing this time-varying volatility for predic-

tive purposes. To do so, we develop a general estimation approach to incorporate volatility

proxy information into dynamic factor models with stochastic volatility. We apply it to

the dynamic Nelson-Siegel (DNS) model of bond yields. We find that the higher frequency

movements of the yields in the realized volatility data contain valuable information for the

stochastic volatility and lead to significantly better density predictions, especially in the

short term.

Our approach can be applied to the existing classes of dynamic factor models with stochas-

tic volatility. Specifically, we can account for stochastic volatility on the latent factors or

stochastic volatility on the measurement errors. We derive a measurement equation to link

realized volatility to the model-implied conditional volatility of the original observables. In-

corporating realized volatility improves estimation of the stochastic volatility by injecting

precise volatility information into the model.

The DNS model is a dynamic factor model that uses latent level, slope, and curvature

factors to drive the intertemporal movements of the yield curve. This reduces the high-

dimensional yields to be driven by just three factors. The level of the yield curve has

traditionally been linked to inflation expectations while the slope to the real economy. Our

preferred specification introduces stochastic volatility on these latent factors. This leads to

a nice interpretation of the stochastic volatility as capturing the uncertainty surrounding

well-understood aspects of the yield curve. It also reduces the dimension of modeling the

time-varying volatility of the yield curve.

We then compare this specification to several others in the DNS framework, including ran-

dom walk dynamics for the factors and stochastic volatilities, as well as stochastic volatility

on the yield measurement equation. In a forecasting horserace on U.S. bond yields, our
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preferred specification features slight improvements in the point forecast performance and

significant gains in the density forecast performance. We also find that allowing for time-

varying volatility is important for density prediction, especially in the short run. Unlike

conditional mean dynamics, modeling volatility as first-order autoregressive processes rather

than random walks leads to better predictive performance. Furthermore, having stochastic

volatility on the factor equation better captures the time-varying volatility in the bond yield

data when compared to stochastic volatility on the measurement equation.

Our paper relates to the literature in three main areas. First, our paper relates to work

started by Barndorff-Nielsen and Shephard (2002) in incorporating realized volatility in

models with time-varying volatility. Takahashi et al. (2009) use daily stock return data in

combination with high-frequency realized volatility to more accurately estimate the stochas-

tic volatility. Maheu and McCurdy (2011) show that adding realized volatility directly into a

model of stock returns can improve density forecasts over a model that only uses level data,

such as the EGARCH. Jin and Maheu (2013) propose a model of stock returns and realized

covariance based on time-varying Wishart distributions and find that their model provides

superior density forecasts for returns. There also exists work adding realized volatility in

observation-driven volatility models (Shephard and Sheppard, 2010; Hansen et al., 2012).

As opposed to the other papers, we consider a dynamic factor model with stochastic volatil-

ity on the factor equation and use the realized volatility to help in the extraction of this

stochastic volatility. In this sense, we bring the factor structure in the conditional mean to

the conditional volatility as well. Cieslak and Povala (2015) have a similar framework in a

no-arbitrage term structure model. Furthermore, we are the first paper to investigate the

implications of realized volatility for bond yield density predictability.

Second, we contribute to a large literature on bond yield forecasting. Most of the work has

been done on point prediction (see for example, Diebold and Rudebusch, 2012; Duffee, 2012,

for excellent surveys). There has been, however, a growing interest in density forecasting.

Egorov et al. (2006) were the first to evaluate the joint density prediction performance of
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yield curve models. They overturn the point forecasting result of the superiority in random

walk forecasts and find that affine term structure models perform better when forecasting the

entire density, especially on the conditional variance and kurtosis. However, they do not con-

sider time-varying conditional volatility dynamics in the bond yield predictive distribution.

Hautsch and Ou (2012) and Hautsch and Yang (2012) add stochastic volatility to the DNS

model by considering an independent AR(1) specification for the log volatilities of the latent

factors. They do not do formal density prediction evaluation of the model, but give sug-

gestive results of the possible improvements in allowing for time-varying volatility. Carriero

et al. (2013) find that using priors from a Gaussian no-arbitrage model in the context of a

VAR with stochastic volatility improves short-run density forecasting performance. Building

on this previous work, we introduce potentially highly accurate volatility information into

the model in the form of realized volatility and evaluate bond yield density predictions to

see whether this extra information about the bond yield volatility can improve the quality

of the predictive distribution.

Finally, we also add to a growing literature on including realized volatility information

in bond yield models. Andersen and Benzoni (2010) and Christensen et al. (2014) view

realized volatility as a benchmark on which to compare the fits of affine term structure

models. Cieslak and Povala (2015) are interested in using realized covariance to better extract

stochastic volatility and linking the stochastic volatility to macroeconomic and liquidity

factors. These papers focus on in-sample investigations of incorporating realized volatility

in bond yield models. Another stream of research exploits information in high-frequency

movements of bond prices to achieve better point prediction performance. For example,

Wright and Zhou (2009) report that the realized jump mean measure constructed from

Treasury bond futures improves excess bond return point prediction by 40%. Our paper, in

contrast to these others, considers the improvement from using realized volatility in out-of-

sample bond yield density prediction.

In section 2, we introduce our methodology for incorporating volatility proxies into dy-
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namic factor models in the context of the DNS model and other competitor specifications.

We discuss the data in section 3. We present our estimation and forecast evaluation method-

ology in section 4. In section 5, we present in-sample and out-of-sample results. We conclude

in section 6.

2 Model

We introduce the dynamic Nelson-Siegel model with stochastic volatility (DNS-SV) proposed

by Bianchi et al. (2009), Hautsch and Ou (2012), and Hautsch and Yang (2012). Then, we

discuss the incorporation of realized volatility information into this framework. Finally, we

consider alternatives to our main approach.

2.1 The Dynamic Nelson-Siegel model and time-varying bond yield

volatility

Denote yt(τ) as the continuously compounded yield to maturity on a zero coupon bond with

maturity of τ periods at time t. Following Diebold and Li (2006), we consider the factor

model for the yield curve,

yt(τ) = fl,t + fs,t

(
1− e−λτ

λτ

)
+ fc,t

(
1− e−λτ

λτ
− e−λτ

)
+ εt(τ), εt ∼ N(0, Q) (1)

where fl,t, fs,t and fc,t serve as latent factors and εt is a vector that collects the idiosyncratic

component εt(τ) for all maturities. As is well documented in the literature, the first factor

mimics the level of the yield curve, the second the slope, and the third the curvature. We

assume that the Q matrix is diagonal. This leads to the natural interpretation of a few

common factors driving the comovements in a large number of yields. All of the other

movements in the yields are considered idiosyncratic. We model the dynamic factors as a
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multivariate vector autoregressive process, given by,

ft = (I3 − Φf )µf + Φfft−1 + ηt, ηt ∼ N(0, Ht) (2)

where ft = [fl,t, fs,t, fc,t]
′ is a 3 × 1 vector, I3 is a 3 × 3 identity matrix, Φf is a 3 × 3

matrix, µf is a 3 × 1 vector, and ηt is a vector that collects the innovations to each factor,

with a potentially time-varying diagonal variance-covariance matrix Ht. We also assume

that idiosyncratic shocks εt and factor shocks ηt are independent. Following Bianchi et al.

(2009), Hautsch and Ou (2012), and Hautsch and Yang (2012), we model the logarithm of

the variance of the shocks to the factor equation as AR(1) processes,

hi,t = µh,i(1− φh,i) + φh,ihi,t−1 + νi,t, νi,t ∼ N(0, σ2
h,i) (3)

for i = l, s, c where exp(hi,t) corresponds to the ith diagonal element of the variance-

covariance matrix Ht
1. In addition, shocks to the stochastic volatilities of the factor in-

novations are assumed to be independent. We call this specification the DNS-SV model

(dynamic Nelson-Siegel with stochastic volatility).

2.2 DNS-RV

We claim that by using high-frequency data to construct realized volatilities of the yields,

it is possible to aid in the extraction of the stochastic volatilities governing the level, slope,

and curvature of the DNS-SV model. Using realized volatility to augment our algorithm

1This formulation implies that shocks to the factors, {ηl,t, ηs,t, ηc,t} are independent each other. We
maintain this independence assumption following the original dynamic Nelson-Siegel model of Diebold and
Li (2006). We can relax this assumption by decomposing the covariance matrix ηt as in Cogley and Sargent
(2005) and Primiceri (2005) to obtain,

cov(ηt) = CHtC
′ =

(
1 0 0
cls 1 0
clc csc 1

)(
exp(hl,t) 0 0

0 exp(hs,t) 0
0 0 exp(hc,t)

)(
1 cls clc
0 1 csc
0 0 1

)
,

where cls, clc, and csc are real numbers. Our main idea goes through with this formulation by redefining λf
in equation 4 as λ̃f = λfC.
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should make estimation of the stochastic volatility parameters more accurate and produce a

superior predictive distribution. Crucially, we need to find an appropriate linkage between

our volatility proxy - realized volatility - and the stochastic volatility in the model. Given

the definition of the model-implied conditional volatility, we propose2

RVt ≈ V art−1(yt) = diag(ΛfHtΛ
′
f +Q) (4)

where RVt is the realized volatility of bond yields, which has the same dimension as the

bond yield vector yt, and Λf is the factor loading matrix given by equation 1. Insofar as

realized volatility provides an accurate approximation to the true underlying conditional

time-varying volatility, equation 4 is the one that links this information to the model.

Upon adding measurement error, one can view equation 4 as a nonlinear measurement

equation. In principle, we have several tools to handle this nonlinearity, including the particle

filter. To keep estimation computationally feasible, when estimating ht, we choose to take

a first order Taylor approximation of the logarithm of this equation around a 3 × 1 vector

µh = [µh,l, µh,s, µh,c]
′ with respect to ht. This leads to a set of linear measurement equations

that links the realized volatility of the bond yields and the underlying factor volatility,

log(RVt) = β + Λhh̃t + ζt, ζt ∼ N (0, S) , (5)

where we write the logarithm of volatility in deviation form h̃i,t = hi,t − µh,i for i = l, s, c.

We assume that RVt follows a log-normal distribution conditional on past histories of bond

yields and bond yield realized volatilities. This assumption leads to a normally distributed

measurement error ζt
3. We call this new model the dynamic Nelson-Siegel with realized

volatility (DNS-RV) model. The difference between this model and DNS-SV comes from

augmenting equation 1 with a new measurement equation 5. This equation has a constant

2This strategy of linking an observed volatility measure to the model is also used in other papers (Maheu
and McCurdy (2011) in a univariate model and Cieslak and Povala (2015) in a multivariate context).

3A detailed derivation for equation 5 can be found in the Appendix.



8

β and a factor loading Λh. The parameter β comes from the linearization4 while we can

interpret Λh as a loading for the factor volatility used to reduce the dimension of the volatility

data, log(RVt). This very naturally extends the dynamic factor model, which transforms

high-dimensional data (yt) into a few number of factors (ft) via the factor loading matrix

Λf . The volatility factor loading (Λh) is a function of other model parameters (Λf , Q, µh)

with the functional form given by the linearized version of equation 45. We can view this as

a model-consistent restriction on the linkage between the conditional volatility of observed

data, approximated by log(RVt), and the factor volatility ht. For the same reasons as in

the baseline DNS-SV model, we set the S matrix to be diagonal. These are interpreted as

idiosyncratic errors, and we therefore do not model them to be contemporaneously or serially

correlated.

In summary, the DNS-RV model introduces a new measurement equation into the state

space of the DNS-SV model.

(Measurement equation)

yt = Λfft + εt, εt ∼ N(0, Q)

log(RVt) = β + Λhh̃t + ζt, ζt ∼ N (0, S) ,

(6)

(Transition equation)

ft = (I3 − Φf )µf + Φfft−1 + ηt, ηt ∼ N(0, Ht = diag(e[hl,t,hs,t,hc,t]))

hi,t = µi,h(1− φi,h) + φi,hhi,t−1 + νi,t, νi,t ∼ N(0, σ2
i,h)

(7)

for i = l, s, c. The operator diag(·) turns a vector into a diagonal matrix. In our application,

both observed bond yields (yt) and realized volatilities (log(RV )t) are 17× 1 vectors. More-

over, both sets of variables have a factor structure with dynamics following the transition

4We estimate β as a separate parameter as in Takahashi et al. (2009). See the Appendix for more detail.
5Detailed formulas for the volatility factor loading matrix can be found in the Appendix.
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Table 1 Model Specifications

Label Factors (level, slope, curvature) Conditional variance Realized volatility

RW-C Random walk Constant Not used
RW-SV Random walk log AR(1) in each factor Not used
RW-RV Random walk log AR(1) in each factor Used

DNS-C Diagonal Φf Constant Not used
DNS-SV Diagonal Φf log AR(1) in each factor Not used
DNS-RV Diagonal Φf log AR(1) in each factor Used

RW-SV-RW Random walk Random walk Not used
DNS-SV-RW Diagonal Φf Random walk Not used

DNS-ME-SV Diagonal Φf log AR(1) in measurement equation Not used
DNS-ME-RV Diagonal Φf log AR(1) in measurement equation Used

Note: We list the specifications for the DNS model considered in this paper.

equations. In our application, we follow Diebold and Li (2006) and assume Φf and Ht to be

diagonal matrices6.

2.3 Alternative specifications

We have four classes of alternative specifications to compare forecasts to our baseline model.

We briefly introduce them in this section and list all specifications considered in the paper

in Table 1.

2.3.1 Dynamic Nelson-Siegel (DNS-C)

The first model is the standard Diebold-Li DNS model discussed at the beginning of the

paper. It does not allow for stochastic volatility. This model has been shown to forecast the

level of bond yields quite well, at times beating the random walk model of yields.

6This specification implies that the movements of the factors are unrelated to each other. While this
may seem as a tight restriction at first blush, Diebold and Rudebusch (2012) point out that the assumption
does not seem poor in so far as the factors are related to the principal components of the yield curve.
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2.3.2 Dynamic Nelson-Siegel-Stochastic Volatility (DNS-SV)

The second is the DNS-SV model that adds stochastic volatility to the transition equation.

It is summarized at the beginning of this section. By allowing for stochastic volatility, this

model should improve upon the standard DNS model, especially in the second moments, as

it can capture the time-varying volatility present in the bond yield data.

2.3.3 Dynamic Nelson-Siegel-Random Walk (RW)

The bond yield forecasting literature (e.g. van Dijk et al. (2014) and references therein)

has shown that random walk specifications of the yield curve generally perform quite well.

Oftentimes, the no-change forecast from a current period does best among a large group of

forecasting models. It is in this sense that bond yield forecasting is difficult. Given these

results, we also augment the DNS-C, DNS-SV, and DNS-RV model classes with random

walk parameterizations of the factor processes.

The empirical macroeconomic literature (Cogley and Sargent, 2005; Justiniano and Prim-

iceri, 2008; Clark, 2011) often specifies stochastic volatility as following a random walk. Do-

ing so reduces the number of parameters estimated while also providing a simple no-change

forecast benchmark for time-varying volatility. As long-horizon bond yield volatility links

with macroeconomic volatility, we also have random walk specifications for the stochastic

volatilities.

2.3.4 Dynamic Nelson-Siegel-Measurement Error Stochastic Volatility (+ Re-

alized Volatility) (DNS-ME)

Koopman et al. (2010) argue that putting the time-varying conditional volatility on the

measurement errors provides an improvement for the in-sample fit of the DNS class of models.

To evaluate whether these results extend to forecasting as well, we model independent AR(1)

specifications for the measurement error stochastic volatilities. While following this strategy
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greatly increases the number of parameters estimated, it could improve forecasting as each

yield has its own stochastic volatility process. Therefore, as opposed to a time-varying Ht

and constant Q matrix in the DNS-SV and DNS-RV setups, now H is constant while Qt has

stochastic volatility.

Qt = diag(eqt) (8)

qi,t − µq,i = φq,i(qi,t−1 − µq,i) + νi,t, νi,t ∼ N(0, qi), (9)

for i = 1, ..., N where N is the number of bond yields in the observation equation. qt is

a vector that collects all stochastic volatilities in the measurement errors. Qt remains a

diagonal matrix, as equation 8 shows. We again model the logarithm of the variances as

independent first order autoregressive processes.

We also consider incorporating realized volatility information into this model. Doing so

leads to the following relationship

RVt ≈ V art−1(yt) = diag(ΛfHΛ′f +Qt). (10)

As before, we do a first order Taylor approximation of the logarithm of this equation around

the 17×1 vector µq. We also add in measurement error for estimation. However, in contrast

to the DNS-RV model, we link each element of log(RVt) to its corresponding element in qt.

2.4 Discussion

Note that our DNS-SV and DNS-RV model specifications have three factors governing time-

varying conditional volatility that are independent of the yield curve factors. Hence, the total

number of latent factors explaining the joint distribution of bond yields is larger than that of

standard no-arbitrage affine term structure models considered in the literature (Duffie and

Kan, 1996). In addition, our volatility factors are unspanned volatility in the sense that the
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cross-sectional properties of bond yields (i.e., the yield curve) is determined by ft in equation

6. As we are not imposing no-arbitrage restrictions, the volatility factors (ht) do not face

the dual role of fitting the cross-section and the conditional volatility dynamics of bond

yields as pointed out by Collin-Dufresne et al. (2009). Relative to the standard no-arbitrage

affine term structure model, the DNS-SV and DSN-RV models provide a more flexible way

to achieve our main goal of forecasting the joint distribution of bond yields. They do so by

using three factors (ft) to fit yield conditional mean dynamics and three other factors (ht)

to fit yield volatility dynamics7.

3 Data

We use a panel of unsmoothed Fama and Bliss (1987) U.S. government bond yields at the

monthly frequency with maturities of 3, 6, 9, 12, 15, 18, 21 months and 2, 2.5, 3, 4, 5, 6, 7, 8, 9,

10 years from January 1981 to December 2009. This dataset is provided by Jungbacker et al.

(2013)8. To construct the monthly realized volatility series, we use daily U.S. government

bond yield data with the same maturities from January 2, 1981 to December 30, 2009 taken

from the Federal Reserve Board of Governors with the methodology of Gürkaynak et al.

(2007) 9 10.

We construct the realized variance of each month’s yields using daily bond yield data.

7It seems that at least more than one volatility factor is essential to explain the bond yield distribution
in the affine term structure model framework (See for example, Creal and Wu, 2014; Cieslak and Povala,
2015).

8http://qed.econ.queensu.ca/jae/datasets/jungbacker001/
9http://www.federalreserve.gov/econresdata/researchdata/feds200628_1.html

10Because most papers in the literature estimate the DNS model with unsmoothed Fama and Bliss data,
we generate and evaluate predictions for the unsmoothed Fama and Bliss data. Unfortunately, this data is
only available at the monthly frequency. Even though the two datasets use different methodologies, monthly
yield data based on the daily bond yield from Gürkaynak et al. (2007) is very close to the one based on the
unsmoothed Fama and Bliss method.

http://qed.econ.queensu.ca/jae/datasets/jungbacker001/
http://www.federalreserve.gov/econresdata/researchdata/feds200628_1.html
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The formula for realized variance at time t is

RVt =
D∑
d=1

(
∆yt+ d

D

)2
.

where D is the number of daily data in one time period t. This formula converges in

probability to the true conditional variance as the sampling frequency goes to infinity under

assumptions laid out in Andersen et al. (2003). Usually, there are around 21 days in each

month, with less depending upon the number of holidays in a month that fall on normal

trading days.

We use daily data to construct our realized volatilities for a few reasons. First, we want

to use realized volatility information starting in 1981 to use a sample period similar to

other bond yield forecasting studies. The availability of higher-frequency intraday data

begins much later. For instance, Cieslak and Povala (2015) start their estimation in 1992

for specifically this reason. Second, the month-to-month volatility movements we want the

volatility proxy to capture do not necessitate using ultra-high frequency data. Finally, while

results may improve with higher frequency data, we show that positive effects are present

even with lower frequency realized volatility.

Figure 1 plots the time series of monthly U.S. government bond yields and logarithm of

realized volatilities. All yields exhibit a general downward trend from the start of the sample.

For around the first 25 months, the realized volatility seems quite high and exhibits large time

variation. After around 1983, yield volatility dies down and largely exhibits only temporary

spikes in volatility. For a period of 2 years starting in 2008, the realized volatility picks up

across all yields. We attribute this to the financial crises. Another interesting feature of

log realized volatility is that it shows large autocorrelation. Its first-order autocorrelation

coefficients range from 0.59 to 0.69 and the 12th-order autocorrelation coefficients range from

0.20 to 0.31.11 This means that realized volatility data could help even for the long-horizon

11We provide tables in the supporting material for the descriptive statistics of monthly realized volatility
of bond yields.
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Figure 1 U.S. Treasury Yields

(a) Yields (monthly, annualized %)

(b) Yield Realized Volatilities (Monthly, Log)

Notes: We present monthly U.S. Treasury yields with maturities of 3, 6, 9, 12, 15, 18, 21 months and 2, 2.5,
3, 4, 5, 6, 7, 8, 9, 10 years over the period January 1981 – November 2009. Monthly yields are constructed
using the unsmoothed Fama-Bliss method. Monthly yield realized volatilities are constructed based on daily
yields using Wright’s dataset. Blue shaded bars represent NBER recession dates.

forecasts that we consider in this paper.

Both the yields and realized volatilities do seem to exhibit a factor structure, meaning

that each set of series co-move over time. In fact, a principal components analysis shows that

the first three factors for yields explain 99.95% of the variation in the U.S. yield curve. The

first three factors for realized volatilities explain 98.53% of the variation (Table 2). Although

the fact that U.S. bond yields can be explained by the first few principal components is well

documented, it is interesting that the same feature carries over to the realized volatility of

U.S. bond yields.
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Table 2 Variance explained by the first five principal components (%)

Yield log(RV)

pc 1 98.16 84.30
pc 2 99.84 94.62
pc 3 99.95 98.53
pc 4 99.98 99.46
pc 5 99.98 99.85

Notes: Numbers in the table are the percentage of total variance explained by the first five principal compo-
nents for U.S. Yield data and log(RV). log(RV) is the logarithm of the monthly realized volatility constructed
based on the daily U.S. yield data.

4 Estimation/Evaluation Methodology

4.1 Estimation

We perform a Gibbs sampling Markov Chain Monte Carlo algorithm for 15, 000 draws.

We keep every 5th draw and burn in for the first 5, 000 draws. Due to our linearization

approximation in introducing realized volatility, all specifications that we consider can be

sampled by using the method developed in Kim et al. (1998) for the stochastic volatility

state space model. Details of the state space representation and the estimation procedure

can be found in the appendix. Details on the prior can be found in the appendix as well,

although we comment that our choice of prior is loose and is not expected to impact the

estimation results radically.

We highlight the difference in estimation procedure due to the additional measurement

equation for the realized volatility. Roughly speaking, there are two sources of information

for the latent volatility factor ht. The first source is from the latent factor ft. To see this,

one can transform the transition equation for ft as follows

log
(
(fi,t − µi,f (1− φi,f )− φi,ffi,t)2

)
= hi,t + log(x2i,t), xi,t ∼ N(0, 1) (11)

for i = l, s, c. This is common to both DNS-SV and DNS-RV. The second source is from



16

equation 6 which relates log(RVt) with ht and is unique to DNS-RV. For the estimation of

the DNS-RV model, we augment the realized volatility measurement equation to the Kim

et al. (1998)’s state space model representation defined by equation 3 and equation 11.

Then, conditional on the other parameters and data, extraction of ht amounts to running a

simulation smoother in conjunction with the Kalman filter with and without equation 6.

4.2 Forecast evaluation

We consider model performance along both the point and density forecasting dimensions.

The appendix contains further details on the Bayesian simulation algorithm we use to gen-

erate the forecasts. We begin forecasting on February 1994 and reestimate the model in an

expanding window and forecast moving forward two months at a time. For every forecast

run at a given time t, we forecast for all yields in our dataset and for horizons ranging from

1 month to 12 months ahead. This leads to a total of 94 repetitions.

Point forecast

To evaluate the point prediction, we use the Root Mean Square Forecast Error (RMSE)

statistic,

RMSEM
τ,ho =

√
1

F

∑(
ŷMt+ho(τ)− y(τ)t+ho

)2
. (12)

Call the yield τ forecast at horizon ho made by model M as ŷMt+ho(τ) and y(τ)t+ho the realized

value of the yield at time t + ho. F is the number of forecasts made. Then, equation 12

provides the formula for the RMSE. To gauge whether there are significant differences in the

RMSE, we use the Diebold and Mariano (1995) t-test of equal predictive accuracy.

Density forecast

The log predictive score (Geweke and Amisano, 2010) gives an indication of how well a model

performs in density forecasting,

LPSMτ,ho =
1

F

∑
log p(yt+ho(τ)|yt,M). (13)
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where p(yt+ho(τ)|yt,M) denotes the ho-step ahead predictive distribution of yield τ generated

by model M given time t information. Following Carriero et al. (2013), we estimate the log

predictive density by a kernel density estimator using MCMC draws for parameters and

latent states and compute the p-value for the Amisano and Giacomini (2007) t-test of equal

means to gauge whether there exist significant differences in the log predictive score.

5 Results

We first present in-sample results of the model, focusing on time-varying volatility. Then,

we move to point and density forecasting results.

5.1 In-sample

We first present the full sample estimation from January 1981 - November 2009. We focus

on how adding realized volatility information alters the model. Adding in second-moment

information does not significantly change conditional mean dynamics, so we relegate our

discussion of the extracted factors to the appendix12. Our extracted factors are similar to

those found in Diebold and Li (2006).

The stochastic volatility dynamics deserve some more precise discussion. Figure 2 shows

the volatility estimate from the DNS-C, DNS-SV, and DNS-RV models. The fluctuations

of the extracted stochastic volatilities in both the DNS-SV and DNS-RV models show that

there exists conditional time-varying volatility in the data. Relative to the DNS-SV spec-

ification, adding in realized volatility data makes the extracted stochastic volatility much

less persistent and more variable. This leads to a lower autoregressive parameter and higher

innovation standard deviation estimates for all of the stochastic volatility processes (Table

12All other in-sample estimation results are in the appendix.
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Figure 2 Stochastic volatility for bond yield factors

Level Factor Volatility

DNS-RV DNS-SV

Slope Factor Volatility

DNS-RV DNS-SV

Curvature Factor Volatility

DNS-RV DNS-SV

Notes: Posterior median of log stochastic volatility (ht) for bond yield factors from DNS-RV (left column)
and DNS-SV (right column). Red dotted line is volatility level estimated from DNS-C. Blue band is 80%
credible interval. Estimation sample is from January 1981 to November 2009.
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Table 3 Posterior Estimates of Parameters on ht Equation

DNS-SV DNS-RV

5% 50% 95% 5% 50% 95%

µh,l -4.40 -2.56 -1.48 -4.19 -3.92 -2.21
µh,s -3.41 -2.30 -1.67 -3.22 -2.85 -1.94
µh,c -1.48 -0.96 -0.47 -2.18 -1.88 -1.39

φh,l 0.93 0.98 0.999 0.58 0.66 0.73
φh,s 0.92 0.97 0.995 0.57 0.64 0.72
φh,c 0.81 0.92 0.98 0.39 0.49 0.60

σh,l 0.01 0.03 0.08 0.41 0.75 0.92
σh,s 0.01 0.04 0.10 1.27 1.72 2.64
σh,c 0.02 0.09 0.27 1.30 1.78 4.30

Notes: Posterior moments are based on estimation sample from January 1981 to November 2009.

3). The DNS-RV model also delivers lower stochastic volatility mean estimates. These differ-

ences lead to differences in forecasting. For example, the lower autoregressive parameter in

the DNS-RV model means that it predicts faster mean reversion of the stochastic volatilities

relative to the DNS-SV model and the lower long-run mean estimate implies that the DNS-

RV model produces a tighter density prediction in the long run. The smoothed stochastic

volatilities from the DNS-SV model, however, generally captures the low-frequency volatility

movements from the DNS-RV model.

We argue that this difference in the stochastic volatilities matters for density forecasting.

The high-frequency data used to construct the realized volatilities brings information that

the low-frequency monthly yield data misses. By having more accurate estimates of the

current level of time-varying volatility and volatility process parameters, the DNS-RV model

both starts off forecasting at a more accurate point and better captures the dynamics of the

data moving forward.
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Table 4 RMSE comparison

Maturity RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

1-step-ahead prediction
3 0.267 0.992 1.011 1.004 1.034** 1.007 0.991 1.038** 1.071 0.953**
12 0.229 1.005 1.002 1.076** 1.055** 1.003 1.002 1.060** 1.070** 1.072**
36 0.274 1.001 0.996 1.015 1.020 0.990 1.001 1.025 1.010 1.012
60 0.274 1.000 0.995 1.003 1.010 0.987 1.000 1.013 1.002 1.004
120 0.277 1.001 0.996 0.988 0.989 0.999 1.000 0.988 0.986 0.997

3-step-ahead prediction
3 0.506 1.002 1.011 1.036 1.066** 1.018 1.002 1.069** 1.055 1.024
12 0.537 1.002 0.999 1.072 1.073** 0.999 1.002 1.077** 1.064 1.063
36 0.580 1.000 0.998 1.022 1.036 0.990 0.999 1.040 1.018 1.018
60 0.551 1.000 0.998 1.004 1.017 0.986 0.999 1.021 1.005 1.004
120 0.489 1.000 0.998 0.982 0.987 0.995 1.000 0.988 0.987 0.987

6-step-ahead prediction
3 0.932 1.000 1.002 1.003 1.047 1.007 0.999 1.048 1.010 1.000
12 0.915 1.001 1.001 1.040 1.065 0.999 1.000 1.068 1.036 1.034
36 0.881 1.001 1.001 1.017 1.041 0.987 1.000 1.046 1.011 1.011
60 0.819 1.000 0.998 0.998 1.016 0.978 1.000 1.020 0.997 0.997
120 0.665 0.999 0.992* 0.977 0.982 0.980 0.998 0.986 0.981 0.980

12-step-ahead prediction
3 1.592 1.002* 0.999 0.936** 1.013 0.991 1.000 1.015 0.943** 0.940*
12 1.476 1.001 0.999 0.975 1.034 0.991 1.000 1.036 0.976 0.975
36 1.242 1.001 1.001 0.997 1.043 0.979** 1.001 1.046 0.993 0.993
60 1.069 1.002 1.000 0.997 1.031 0.967* 1.001 1.033 0.994 0.994
120 0.833 1.002 0.998 0.976 0.994 0.966 1.001 0.994 0.980 0.976

Notes: The first column shows the RMSE based on the RW-C. Other columns show the relative RMSE
compared to the first column. The RMSE from the best model for each variable and forecast horizon is in
bold letter. Units are in percentage points. Divergences in accuracy that are statistically different from zero
are given by * (10%), ** (5%), *** (1%). We construct the p-values based on the Diebold and Mariano
(1995) t-statistics with a variance estimator robust to serial correlation using a rectangular kernel of h − 1
lags and the small-sample correction proposed by Harvey et al. (1997).

5.2 Point prediction

Table 4 shows the RMSE of selected maturities for 1, 3, 6, and 12-step ahead predictions.

The second column has the calculated RMSE values for the RW-C model. All other values

reported are ratios relative to the RW-C RMSE. Values below 1 indicate superior performance

relative to the random walk benchmark. Stars in the table indicate significant gains relative

to the RW-C model. As expected, the RMSE increases as the forecasting horizon lengthens.

The models with random walk dynamics in the factors do well for short-horizon forecasts

but deteriorate when compared to the stationary models as the prediction horizon lengthens.

In general, all RMSE values have numbers close to 1, reproducing the well-known result in

the bond yield forecasting literature on the difficulty in beating the no-change forecast. As
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Table 5 Log predictive score comparison

Maturity RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

1-step-ahead prediction
3 -0.538 0.205 0.343 0.008 0.198 0.375 0.181 0.173 0.048 0.102
12 -0.357 0.211 0.304 -0.009 0.195 0.316 0.189 0.172 0.012 0.013
36 -0.318 0.129 0.158 0.000 0.118 0.176 0.111 0.104 0.022 0.017
60 -0.265 0.109 0.077 -0.001 0.098 0.105 0.098 0.088 0.019 0.015
120 -0.248 0.110 0.111 0.011 0.121 0.110 0.106 0.108 0.048 0.037

3-step-ahead prediction
3 -1.061 0.183 0.302 0.016 0.165 0.322 0.151 0.133 0.036 0.061
12 -0.985 0.107 0.195 -0.012 0.064 0.196 0.089 0.045 0.007 0.010
36 -0.951 0.027 0.053 -0.002 -0.002 0.067 0.013 -0.018 0.009 0.007
60 -0.882 0.013 0.016 0.003 -0.011 0.035 0.007 -0.015 0.011 0.010
120 -0.779 0.033 0.020 0.014 0.033 0.031 0.036 0.038 0.027 0.029

6-step-ahead prediction
3 -1.485 0.048 0.157 0.028 0.023 0.159 0.033 0.005 0.038 0.053
12 -1.417 0.010 0.065 0.000 -0.058 0.066 0.000 -0.082 0.008 0.012
36 -1.342 -0.017 0.021 0.001 -0.077 0.030 -0.039 -0.095 0.010 0.012
60 -1.263 -0.031 0.008 0.010 -0.072 0.018 -0.045 -0.083 0.016 0.016
120 -1.100 0.031 0.049 0.023 0.038 0.061 0.029 0.033 0.036 0.034

12-step-ahead prediction
3 -1.940 -0.096 0.031 0.091 -0.098 0.041 -0.096 -0.119 0.086 0.094
12 -1.850 -0.071 -0.012 0.048 -0.147 -0.004 -0.089 -0.168 0.048 0.051
36 -1.688 -0.017 -0.001 0.023 -0.122 0.019 -0.049 -0.137 0.032 0.033
60 -1.560 0.005 0.036 0.024 -0.068 0.066 -0.011 -0.073 0.034 0.036
120 -1.387 0.099 0.151 0.030 0.101 0.193 0.098 0.092 0.047 0.045

Notes: The first column shows the log predictive score based on the RW-C. Other columns show the difference
of log predictive score from the first column. Log predictive score differences represent percentage point
differences. Therefore, a difference of 0.1 corresponds to a 10% more accurate density forecast. The log
predictive score from the best model is in bold letter for each variable and forecast horizon.

alluded to in the previous section, adding in time-varying second moments does not largely

impact point predictions, although the DNS-RV model forecasts middle maturities well across

all horizons. For 12-month horizon forecasts, the DNS-C and DNS-ME-RV models also do

well for short maturity yields.

5.3 Density prediction

Table 5 shows the density evaluation result in terms of the log predictive score. Similar to

the RMSE table, the RW-C column gives the value of the log predictive score for the random

walk case while the numbers for the other models are differences relative to that column.

A higher value indicates larger log predictive score and better density forecasting results.

We present p-values based on Amisano and Giacomini (2007) comparing the hypothesis of
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Table 6 Log predictive score of DNS-RV versus other models: p-values

Maturity RW-C RW-SV RW-RV DNS-C DNS-SV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

1-step-ahead prediction
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00
36 0.00 0.22 0.01 0.00 0.18 0.10 0.11 0.01 0.01
60 0.08 0.93 0.02 0.10 0.88 0.87 0.72 0.17 0.15
120 0.07 0.99 0.94 0.11 0.82 0.93 0.98 0.30 0.22

3-step-ahead prediction
3 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.03 0.93 0.00 0.01 0.02 0.00 0.00 0.00
36 0.20 0.31 0.28 0.22 0.18 0.21 0.12 0.29 0.27
60 0.53 0.60 0.27 0.59 0.37 0.51 0.34 0.67 0.66
120 0.60 0.96 0.64 0.77 0.96 0.91 0.87 0.94 0.97

6-step-ahead prediction
3 0.12 0.04 0.93 0.25 0.04 0.02 0.03 0.24 0.32
12 0.38 0.28 0.98 0.44 0.15 0.20 0.12 0.45 0.50
36 0.57 0.16 0.74 0.64 0.19 0.09 0.16 0.73 0.75
60 0.77 0.20 0.74 0.90 0.18 0.12 0.14 0.98 0.97
120 0.35 0.52 0.78 0.55 0.64 0.51 0.59 0.68 0.66

12-step-ahead prediction
3 0.76 0.10 0.82 0.70 0.30 0.06 0.25 0.70 0.66
12 0.97 0.23 0.80 0.38 0.41 0.11 0.36 0.34 0.35
36 0.72 0.02 0.17 0.92 0.43 0.00 0.38 0.69 0.72
60 0.10 0.00 0.26 0.44 0.34 0.00 0.32 0.51 0.56
120 0.01 0.00 0.39 0.05 0.26 0.00 0.23 0.07 0.07

Notes: This table presents the p-values from Amisano and Giacomini (2007) tests comparing the hypothesis
of equal log predictive score of the DNS-RV with alternative models. Bold letter indicates p-values less than
5%. Test statistics are computed with a variance estimator robust to serial correlation using a rectangular
kernel of h− 1 lags and the small-sample correction proposed by Harvey et al. (1997).

equal log predictive score of the DNS-RV with those of the alternative models in Table 6. As

opposed to the point prediction results, three interesting findings emerge when we consider

the log predictive score.

First, for the short-run horizon, having realized volatility gives significant gains in density

prediction. This is on top of a large improvement in log predictive score from adding stochas-

tic volatility, which Carriero et al. (2013) find. Table 6 shows that the DNS-RV model has

significantly higher log predictive score values for one- and three-month ahead predictions

for short term maturities when compared to most competitors13. By producing improved

estimates of the current state of volatility, we would expect that short horizon forecasts have

the largest gain. The improved density forecasting performance for the DNS-RV and RW-RV

13We also compute the model confidence set of Hansen et al. (2011) and find a similar result. See the
supporting material for the model confidence set results.
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models continues even up to a 6-month forecasting horizon. At one year ahead, most models

with realized volatility have their volatility processes returning close to the unconditional

mean, so the gain diminishes.

Second, comparing RW-SV to RW-SV-RW, RW-RV to RW-RV-RW, and DNS-SV to DNS-

SV-RW shows that given a fixed conditional mean specification, a random walk specification

on conditional volatility dynamics in general leads to poorer results. This illustrates the fact

that even though conditional mean dynamics of bond yields approximate a random walk in

our sample, conditional volatility dynamics exhibit mean reversion. Bond yields therefore

do have forecastability, although simply looking at the conditional mean dynamics do not

reveal this fact strongly.

Third, an alternative specification for introducing stochastic volatility into the model by

putting it on the measurement equation does not forecast as well as the specification with

stochastic volatility on the transition equation. Comparing DNS-SV to DNS-ME-SV shows

that for short horizon forecasts, DNS-SV performs better whereas for longer horizon forecasts,

DNS-ME-SV does better. A similar story holds when looking at DNS-RV and DNS-ME-RV,

although DNS-RV does better even up to 6-month horizon forecasts with mixed 12-month

horizon results. The measurement error specifications give consistent improvements in the

log predictive score over and above the constant volatility models, although the gains are

small.

One fact holding back the performance of the measurement error specifications is that

the measurement error variance explains a small portion of total bond yield variance. For

example, the ratio of the standard deviations of smoothed measurement errors to the stan-

dard deviations of smoothed factors in the DNS-ME-SV model is often below 3 percent and

never above 8 percent14. In Figure 3, we see that the model with stochastic volatility on the

measurement errors does not generate movements in the conditional time-varying volatility

14This fact is similar across different model specifications. The values from all models are presented in
the supporting materials.
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Figure 3 Stochastic variance of individual yield

Based on DNS-SV and ME-SV

3 month maturity 1 year maturity 3 year maturity

5 year maturity 8 year maturity 10 year maturity

Notes: Red dotted line: Conditional variance from DNS-SV. Blue solid line: Conditional variance from
DNS-ME-SV with 80% credible interval. Black dotted horizontal line: Conditional variance from DNS-C.
Estimation sample is from January 1981 to November 2009.

of various middle maturity yields. In fact, the conditional variances of the 1-year, 3-year,

5-year, and 8-year maturities are nearly on top of the black dotted line, which is the variance

of the yields implied by the DNS-C model. Therefore, putting time-varying volatility in the

measurement errors does not drastically change the model-implied predictive distributions.

This explains why the density forecasting performance for this class of models mimics that

of the DNS-C model.

In contrast, the Figure 3 shows that putting stochastic volatility in the shocks to the

bond yield factor can better capture time-varying volatility. The DNS-SV model-implied

time-varying volatility consistently fits the narrative evidence of the Great Moderation from

the mid-1980’s until the mid-2000’s. It also picks up the increases in volatility from the early

2000’s recession and recent financial crises.
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6 Conclusion

We investigate the effects of introducing realized volatility information on U.S. bond yield

density forecasting. To do so, we develop a general estimation approach to incorporate

realized volatility into dynamic factor models with stochastic volatility. We compare the

performance of our benchmark model DNS-RV with a variety of different models proposed

in the literature and find that the DNS-RV model produces superior density forecasts, espe-

cially for the short-run. In addition to this, incorporating time-varying volatility in general

improves density prediction, time-varying volatility is better modeled as a stationary process

as opposed to a random walk, and time-varying volatility in the factor equation generates

better density predictions when compared to time-varying volatility on the measurement

equation.
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Appendices

A State Space Representation

For completeness, we present the full specification of the state space form of the model.

We give a detailed explanation of these equations in sections 2.1 and 2.2 of the main text.

Consider a set of bond yields yt = {yt(1), ..., yt(N)}′. τj is the maturity in months of bond

yield j and λ is the point of maximal curvature.

yt =



1 1−e−λτ1
λτ1

1−e−λτ1
λτ1

− eλτ1

. . .

. . .

1 1−e−λτN
λτN

1−e−λτN
λτN

− eλτN




fl,t

fs,t

fc,t

+ εt, εt ∼ N(0, Q) (A.1)

log(RVt) = β + Λhh̃t + ζt, ζt ∼ N (0, S) (A.2)

ft = (I3 − Φf )µf + Φfft−1 + ηt, ηt ∼ N
(
0, diag

(
e[hl,t,hs,t,hc,t]

))
(A.3)

hi,t = µi,h(1− φi,h) + φi,hhi,t−1 + νi,t, νi,t ∼ N(0, σ2
i,h) (A.4)

for i = l, s, c and Q and S are diagonal matrix. We write h̃t as a vector of the demeaned

volatility processs with individual elements h̃i,t = hi,t − µi,h.

B Measurement Equation for RV: Derivation and Ap-

proximation

Equation A.2 is the linearized version of the nonlinear measurement equation that comes

from adding realized volatility information to the dynamic factor model. We perform a
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first-order approximation of the logarithm of the following equation

RVt ≈ V art−1(yt) = diag(ΛfHtΛ
′
f +Q)

= diag(Λ̃fH̃tΛ̃
′
f +Q)

(A.5)

where we write the logarithm of volatility in deviation form h̃i,t = hi,t − µh,i for i = l, s, c.

Then H̃t is a 3 × 3 diagonal matrix with each element corresponding to eh̃i,t and Λ̃f =

Λf [e
µl/2, eµs/2, eµc/2]′ . We first derive the nonlinear measurement equation that links the

realized volatility with underlying factor volatility. Our derivation is similar to Maheu and

McCurdy (2011) but we derive it under the dynamic factor model framework. Then, we

describe the approximation to get the linearized measurement equation for RVt
15.

Derivation of the measurement equation. We assume that RVt is a noisy measure for

the true conditional volatility. Following Maheu and McCurdy (2011), we assume that RVt

follows a log-normal distribution conditional on past histories of bond yields and bond yield

realized volatilities:

RVt = diag(Λ̃fH̃tΛ̃
′
f +Q)Zt,

where Zt is a 17 × 1 vector and each element in Zt follows a log-normal distribution with

Et−1[Zi,t] = 1 for i = 1, ..., 17. Taking logarithm on both sides gives

log(RVt) = β̃ + log(diag(Λ̃fH̃tΛ̃
′
f +Q)) + S̃ζt, ζt ∼ N (0, I17). (A.6)

where β̃ is a 17 × 1 vector, S̃ is a 17 × 17 diagonal matrix, and I17 is a 17 × 17 identity

matrix. We separately estimate β̃ and S̃ where β̃ is a conditional variance of Zt plus a bias

correction term (e.g. Takahashi et al., 2009, for the univariate case).

15The derivation and approximation of the measurement equations when we add stochastic volatility to
the measurement errors Qt follows the same basic procedure, so we suppress the details.
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Linearization. We present the derivation of equation 5. We linearize equation A.6 for the

ith element around h̃j,t = 0 for j = 1, 2, 3 and S̃i,i = 0 for i = 1, ..., 17 to get

log(RVi,t) = βi + νi

(
3∑
j=1

Λ̃2
f,i,jh̃j,t

)
+ S̃ζt, ζt ∼ N (0, I17).

where Λ̃2
f,i,j is the square of the (i, j)th element of Λ̃f in equation 5 and

βi = β̃i + log

(
3∑
j=1

Λ̃2
f,i,j +Qi,i

)

νi =
1(∑3

j=1 Λ̃2
f,i,j +Qi,i

) .
Note that the term νi

(∑3
j=1 Λ̃2

f,i,jh̃j,t

)
is linear in h̃t and we can write it as Λh,ih̃t. In

addition, we write S = S̃S̃ ′. This completes the derivation of the RV measurement equation

(equation A.2).

C Estimation Procedure

Presented is the algorithm for the posterior sampler. We draw 15, 000 samples, saving every

5th draw, with the first 5, 000 draws as burn-in. The priors we choose for the model are

presented in Table A-1. We describe the algorithm for our main model, DNS-RV. Estimation

of other model specifications is a straightforward simplification or generalization. We collect

the parameters on which we would like to perform inference in one vector and write it as

Θ∗ = {Q, β, S, f1:T , µf , φf , h1:T , µh, φh, σ2
h}16. In addition, we denote Θ∗−x as the parameter

vector of all elements in Θ∗ except x and data as U.S. bond yields and their corresponding

yield realized volatilities used in the estimation. The posterior sampler iterates the following

16While some authors have estimated the λ, we fix it at 0.0609, noting from Diebold and Li (2006) and
others that the value does not move around too much across time and that its estimation does not seem to
affect the results.
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Table A-1 Prior Distribution

Parameter Description Dim. Dist. Para(1) Para(2)

H Variance of the measurement error
(yt).

17× 1 IG 0 0.001

µf Long-run mean parameter for ft. 3× 1 N 0 100
φf AR(1) coefficient for ft. 3× 1 N 0.8 100
µh Long-run mean parameter for ht. 3× 1 N 0 100
φh AR(1) coefficient for ht. 3× 1 N 0.8 100
σ2
h Variance of the innovation for the

ht.
3× 1 IG 0.01 2

β Intercepts in the RV measurement
equation. Only used for MRV

17× 1 N 0 100

S Variance of the measurement error
RV . Only used for MRV

17× 1 IG 0 0.001

σ2
f Variance of the innovation for the

ft. Only used for models without
time-varying volatility

3× 1 IG 0.1 2

Note: a) All prior distributions are independent. For example, prior distributions for elements in H are
independent from each other and follow the inverse gamma distribution.
b) Dim: Dimension of the parameters.
c) IG: Inverse gamma distribution. Para(1) and Para(2) mean scale and shape parameters, respectively.
d) N: Normal distribution. Para(1) and Para(2) stand for mean and variance, respectively.
e) Priors for φf and φh are truncated so that the processes for factors and volatilities are stationary.
f) MRV is the set of models with realized volatility data.

steps starting with an initial value Θ0 and s = 1:

1. (Drawing Q|data,Θs−1
−Q ): Since Q is diagonal, we draw the diagonal elements one at a

time. Note that without the RV measurement equation, each element of the diagonal

term on Q is distributed as an inverse gamma distribution. For DNS-RV, Q enters

in the realized measurement equation (equation A.6). In this case, we draw Q using

the Metropolis-Hastings algorithm with a proposal distribution as an inverse gamma

distribution with the same moments as in the conditional posterior distribution of

Q without the RV measurement equation. Set Θs−1 = {Q∗, βs−1, Ss−1, f s−11:T , µ
s−1
f ,

φs−1f , hs−11:T , µ
s−1
h , φs−1h , (σ2

h)
s−1} where Q∗ is a new draw from this Metropolis-Hastings

sampler.

2. (Drawing β, S|data,Θs−1
−β,S): We can likewise draw β and the diagonal elements of S
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equation-by-equation. It is a standard linear regression normal-inverse gamma frame-

work. Set Θs−1 = {Q∗, β∗, S∗, f s−11:T , µ
s−1
f , φs−1f , hs−11:T , µ

s−1
h , φs−1h , (σ2

h)
s−1} where β∗ and

S∗ is a new draw from the conditional posterior distribution of β and S.

3. (Drawing f1:T |data,Θs−1
−f1:T ): The Carter and Kohn (1994) multi-move Gibbs sampling

procedure with stochastic volatility can be used to draw the level, slope, and curvature

factors. Set Θs−1 = {Q∗, β∗, S∗, f ∗1:T , µs−1f , φs−1f , hs−11:T , µ
s−1
h , φs−1h , (σ2

h)
s−1} where f ∗1:T is

a new draw from the multi-move Gibbs sampler.

4. (Drawing µf , φf |data,Θs−1
−µf ,φf ): Because we specify the factors and stochastic volatil-

ities to have independent AR(1) processes, we can separate the drawing of the parame-

ters for each factor. Drawing the parameters equation-by-equation is possible through

the linear regression framework allowing for stochastic volatility. We generate draws

from the conditional distribution using the Gibbs sampler laid out in Bianchi et al.

(2009) and Hautsch and Yang (2012). Then, set Θs−1 = {Q∗, β∗, S∗, f ∗1:T , µ∗f , φ∗f ,

hs−11:T , µ
s−1
h , φs−1h , (σ2

h)
s−1}.

5. (Drawing h1:T |data,Θs−1
−h1:T ): We have a measurement equation made up of two parts.

The first part uses the Kim et al. (1998) method to transform the level, slope, and

curvature factor equations (equation A.3). These measurement equations are

log
(
(fi,t − (1− φf,i)µf,i − φf,ifi,t−1)2

)
= hi,t + log(η2i,t) (A.7)

for i = l, s, c. The second part is the realized volatility measurement equation (equation

A.2). Because of our linear approximation of the nonlinear RV measurement equation,

we can simply use the standard Carter and Kohn (1994) multi-move Gibbs sampler

in conjunction with the transition equation for the volatility processes (equation A.4).

This step can be viewed as an extension of the Kim et al. (1998)’s sampler with an

extra linear measurement equations. We set Θs−1 = {Q∗, β∗, S∗, f ∗1:T , µ∗f , φ∗f , h∗1:T ,

µs−1h , φs−1h , (σ2
h)
s−1} where h∗1:T is a new draw from the sampler.
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6. (Drawing µh, φh, σ
2
h|data,Θs−1

−µh,φh,σ2
h
): Conditional on the volatility process series,

h∗1:T , we can use a standard linear regression normal-inverse gamma framework to

draw µh,i, φh,i, and σ2
h,i equation-by-equation for i = l, s, c. Set

Θs = {Q∗, β∗, S∗, f ∗1:T , µ∗f , φ∗f , h∗1:T , µ∗h, φ∗h, (σ2
h)
∗}

where µ∗h,i, φ
∗
h,i, and (σ2

h,i)
∗ are newly drawn parameters from the conditional posterior

distribution.

7. Go to the step 1 with s← s+ 1.

D Forecasting Procedure

Presented in equations A.8 - A.10 is the forecasting algorithm that we use. Because we are

performing Bayesian analysis, we explicitly take into account the parameter uncertainty when

generating our forecasts. We first draw parameters from the relevant posterior distributions

(j) and then simulate 10 trajectories of data given the parameter values (k). We do so for

2, 000 parameter draws for a total of 20, 000 simulated data chains from which to compare

to the realized data (Del Negro and Schorfheide, 2013). Note that for the DNS-C model, we

would not have equation A.10 and the Ht would become H.

ŷj,kt = Λff
j,k
t + ε̃j,kt , ε̃j,kt ∼ N

(
0, Qj

)
(A.8)

f j,kt = (I3 − Φj
f )µf + Φj

ff
j,k
t−1 + η̃j,kt , η̃j,kt ∼ N

(
0, diag

(
e[h

j,k
l,t ,h

j,k
s,t ,h

j,k
c,t ]
))

(A.9)

hj,ki,t − µ
j
i,h = φji,h(h

j,k
i,t−1 − µ

j
i,h) + ẽj,ki,t , ẽj,ki,t ∼ N

(
0,
(
σji,h
)2)

(A.10)

for j = 1, ..., 2, 000, k = 1, ..., 10, and t = T, ..., T + 12 where T is the beginning of the

forecasting period.



A-7

E Supporting Material

This section contains additional tables and figures that support our claims in the main

text. First, we present descriptive statistics of the data that we used in the estimation

and forecasting exercises (section E.1). Then, we report parameter estimates (section E.2)

and estimated bond yields factors ft (section E.3). In section E.4, we report the relative

importance (ratio in %) of variation between the measurement error and ft. Finally, as a

robustness check for the density forecasting evaluation conducted in section 5.3, we compute

and present the model confidence set of Hansen et al. (2011) in section E.5. The model

confidence set results list a subset of forecasting models that includes the best models in

terms of the log predictive score at the 5% confidence level.

E.1 Descriptive statistics of data

Table A-2 Descriptive Statistics (Yields)

Maturity mean std min max ρ̂(1) ρ̂(12) ρ̂(24)

3 5.35 3.14 0.04 16.02 0.97 0.65 0.39
6 5.52 3.17 0.15 16.48 0.98 0.66 0.40
9 5.64 3.19 0.19 16.39 0.98 0.67 0.42
12 5.75 3.19 0.25 16.10 0.98 0.69 0.44
15 5.87 3.21 0.38 16.06 0.98 0.70 0.46
18 5.95 3.20 0.44 16.22 0.98 0.71 0.47
21 6.03 3.19 0.53 16.17 0.98 0.71 0.49
24 6.06 3.15 0.53 15.81 0.98 0.72 0.50
30 6.18 3.11 0.82 15.43 0.98 0.73 0.52
36 6.29 3.08 0.98 15.54 0.98 0.74 0.54
48 6.48 3.02 1.02 15.60 0.98 0.75 0.57
60 6.60 2.94 1.56 15.13 0.98 0.76 0.59
72 6.73 2.92 1.53 15.11 0.98 0.77 0.61
84 6.81 2.84 2.18 15.02 0.98 0.77 0.61
96 6.90 2.81 2.11 15.05 0.98 0.78 0.63
108 6.95 2.79 2.15 15.11 0.98 0.78 0.63
120 6.95 2.72 2.68 15.19 0.98 0.77 0.63

Notes: For each maturity we present mean, standard deviation, minimum, maximum and the j-th order
autocorrelation coefficients for j = 1, 12, and 24.



A-8

Table A-3 Descriptive Statistics (log realized volatility)

Maturity mean std min max ρ̂(1) ρ̂(12) ρ̂(24)

3 -3.05 1.29 -5.33 1.10 0.65 0.31 0.19
6 -3.35 1.21 -6.66 0.64 0.69 0.28 0.18
9 -3.24 1.10 -5.90 0.47 0.66 0.23 0.10
12 -3.11 1.02 -5.76 0.41 0.63 0.21 0.04
15 -2.99 0.96 -5.68 0.36 0.61 0.20 0.01
18 -2.89 0.93 -5.59 0.29 0.61 0.20 -0.01
21 -2.81 0.90 -5.52 0.20 0.60 0.20 -0.02
24 -2.75 0.88 -5.46 0.11 0.60 0.20 -0.03
30 -2.66 0.85 -5.34 -0.04 0.59 0.20 -0.03
36 -2.61 0.83 -5.23 -0.12 0.60 0.21 -0.03
48 -2.57 0.79 -5.02 -0.19 0.61 0.22 -0.02
60 -2.57 0.77 -4.84 -0.22 0.61 0.23 -0.01
72 -2.58 0.76 -4.67 -0.25 0.61 0.25 0.00
84 -2.59 0.76 -4.66 -0.21 0.62 0.27 0.00
96 -2.61 0.75 -4.66 -0.18 0.63 0.29 0.01
108 -2.62 0.75 -4.66 -0.17 0.64 0.30 0.01
120 -2.63 0.75 -4.65 -0.18 0.66 0.31 0.01

Notes: For each maturity we present mean, standard deviation, minimum, maximum and the j-th order
autocorrelation coefficients for j = 1, 12, and 24.
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E.2 In-sample estimation (posterior moments)

We denote {y1, y2, y3, ..., y16, y17} = monthly U.S. Treasury yields with maturities of (3, 6, 9,

12, 15, 18, 21 months and 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10 years.

Table A-4 Posterior moments of H

RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW

y1 5% 0.064 0.063 0.060 0.063 0.063 0.488 0.063 0.063
50% 0.074 0.072 0.068 0.072 0.072 0.610 0.072 0.072
95% 0.085 0.083 0.080 0.083 0.082 0.760 0.083 0.083

y2 5% 0.008 0.008 0.010 0.008 0.008 0.157 0.008 0.008
50% 0.010 0.009 0.012 0.009 0.009 0.202 0.009 0.009
95% 0.012 0.011 0.015 0.011 0.011 0.284 0.011 0.011

y3 5% 0.002 0.002 0.004 0.002 0.002 0.043 0.002 0.002
50% 0.003 0.003 0.005 0.002 0.002 0.067 0.002 0.003
95% 0.004 0.003 0.006 0.003 0.003 0.138 0.003 0.003

y4 5% 0.003 0.003 0.004 0.003 0.003 0.018 0.003 0.003
50% 0.004 0.004 0.005 0.004 0.004 0.038 0.004 0.004
95% 0.005 0.005 0.005 0.005 0.005 0.097 0.005 0.005

y5 5% 0.006 0.006 0.006 0.006 0.007 0.017 0.006 0.006
50% 0.007 0.007 0.007 0.007 0.007 0.035 0.007 0.007
95% 0.008 0.009 0.008 0.009 0.009 0.086 0.009 0.009

y6 5% 0.006 0.006 0.005 0.006 0.006 0.016 0.006 0.006
50% 0.006 0.006 0.006 0.006 0.007 0.034 0.007 0.007
95% 0.007 0.008 0.007 0.007 0.008 0.083 0.008 0.008

y7 5% 0.004 0.004 0.004 0.004 0.004 0.015 0.004 0.004
50% 0.005 0.005 0.005 0.005 0.005 0.033 0.005 0.005
95% 0.006 0.006 0.005 0.006 0.006 0.080 0.006 0.006

y8 5% 0.002 0.002 0.002 0.002 0.002 0.014 0.002 0.002
50% 0.002 0.002 0.003 0.002 0.002 0.033 0.002 0.002
95% 0.003 0.003 0.003 0.003 0.002 0.082 0.002 0.003

y9 5% 0.002 0.002 0.002 0.002 0.002 0.013 0.002 0.002
50% 0.002 0.002 0.003 0.002 0.002 0.029 0.002 0.002
95% 0.003 0.003 0.003 0.003 0.003 0.075 0.003 0.003

y10 5% 0.002 0.002 0.003 0.002 0.002 0.011 0.002 0.002
50% 0.003 0.003 0.003 0.003 0.003 0.026 0.003 0.003
95% 0.003 0.003 0.003 0.003 0.003 0.068 0.003 0.003

y11 5% 0.004 0.004 0.004 0.004 0.004 0.009 0.004 0.004
50% 0.004 0.004 0.004 0.004 0.004 0.021 0.004 0.004
95% 0.005 0.005 0.005 0.005 0.005 0.059 0.005 0.005

y12 5% 0.003 0.003 0.004 0.003 0.003 0.007 0.003 0.003
50% 0.004 0.004 0.004 0.004 0.004 0.017 0.004 0.004
95% 0.004 0.004 0.005 0.004 0.004 0.049 0.004 0.004

y13 5% 0.004 0.004 0.005 0.004 0.004 0.006 0.004 0.004
50% 0.005 0.005 0.006 0.005 0.005 0.013 0.005 0.005
95% 0.005 0.005 0.006 0.005 0.005 0.038 0.005 0.005

y14 5% 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.003
50% 0.004 0.004 0.005 0.004 0.004 0.011 0.004 0.004
95% 0.005 0.004 0.006 0.004 0.004 0.032 0.004 0.004

y15 5% 0.003 0.002 0.004 0.003 0.002 0.004 0.002 0.002
50% 0.003 0.003 0.005 0.003 0.003 0.011 0.003 0.003
95% 0.004 0.004 0.006 0.004 0.004 0.031 0.004 0.004

y16 5% 0.006 0.007 0.007 0.006 0.007 0.006 0.007 0.007
50% 0.007 0.008 0.008 0.008 0.008 0.012 0.008 0.008
95% 0.009 0.009 0.010 0.009 0.009 0.028 0.009 0.009

y17 5% 0.012 0.012 0.012 0.012 0.013 0.016 0.013 0.012
50% 0.014 0.014 0.014 0.014 0.014 0.029 0.014 0.014
95% 0.016 0.016 0.016 0.016 0.017 0.053 0.017 0.017

Notes: Variance of the measurement error. Not applicable to DNS-ME-SV and DNS-ME-RV. Estimation
sample is from January 1981 to November 2009.
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Table A-5 Posterior moments of parameters related to ft

RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

µf,l 5% 0.00 0.00 0.00 -7.28 -5.83 -17.48 0.00 -5.44 -7.20 -7.40
50% 0.00 0.00 0.00 4.63 4.57 -5.47 0.00 4.71 4.41 4.37
95% 0.00 0.00 0.00 7.86 7.17 2.15 0.00 6.94 7.83 7.79

µf,s 5% 0.00 0.00 0.00 -4.28 -4.04 -1.14 0.00 -4.28 -4.47 -4.49
50% 0.00 0.00 0.00 -2.54 -0.88 2.92 0.00 -0.98 -2.55 -2.59
95% 0.00 0.00 0.00 -1.43 6.93 13.81 0.00 6.46 -1.50 -1.43

µf,c 5% 0.00 0.00 0.00 -2.64 -2.13 -6.31 0.00 -1.78 -2.97 -2.91
50% 0.00 0.00 0.00 -0.82 -0.52 0.16 0.00 -0.42 -0.87 -0.79
95% 0.00 0.00 0.00 0.92 0.84 8.66 0.00 0.70 1.26 1.33

φf,l 5% 1.00 1.00 1.00 0.98 0.98 0.99 1.00 0.98 0.98 0.98
50% 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99
95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

φf,s 5% 1.00 1.00 1.00 0.94 0.97 0.99 1.00 0.97 0.94 0.94
50% 1.00 1.00 1.00 0.96 0.99 1.00 1.00 0.99 0.96 0.97
95% 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.99

φf,c 5% 1.00 1.00 1.00 0.92 0.91 0.97 1.00 0.90 0.92 0.93
50% 1.00 1.00 1.00 0.95 0.95 0.99 1.00 0.94 0.96 0.96
95% 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.98 0.99 0.99

σf,l 5% 0.10 0.10 0.98 0.99 0.98 0.09 0.09
50% 0.12 0.11 0.99 1.00 0.99 0.11 0.10
95% 0.13 0.13 1.00 1.00 1.00 0.12 0.12

σf,s 5% 0.16 0.16 0.16 0.15
50% 0.19 0.19 0.18 0.17
95% 0.22 0.21 0.20 0.19

σf,c 5% 0.42 0.43 0.40 0.37
50% 0.49 0.51 0.46 0.44
95% 0.57 0.59 0.54 0.51

Notes: Estimation sample is from January 1981 to November 2009.
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Table A-6 Posterior moments of parameters related to ht

RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW

µh,l 5% -4.75 -4.11 -4.40 -4.19 0.00 0.00
50% -2.55 -3.85 -2.56 -3.92 0.00 0.00
95% -1.11 -1.76 -1.48 -2.21 0.00 0.00

µh,s 5% -3.39 -3.22 -3.41 -3.22 0.00 0.00
50% -2.30 -2.82 -2.30 -2.85 0.00 0.00
95% -1.69 -1.74 -1.66 -1.94 0.00 0.00

µh,c 5% -1.47 -2.25 -1.48 -2.18 0.00 0.00
50% -0.97 -1.93 -0.96 -1.88 0.00 0.00
95% -0.53 -1.45 -0.47 -1.39 0.00 0.00

φh,l 5% 0.93 0.59 0.93 0.58 1.00 1.00
50% 0.98 0.66 0.98 0.66 1.00 1.00
95% 1.00 0.73 1.00 0.73 1.00 1.00

φh,s 5% 0.92 0.56 0.92 0.57 1.00 1.00
50% 0.97 0.65 0.96 0.64 1.00 1.00
95% 0.99 0.72 1.00 0.72 1.00 1.00

φh,c 5% 0.74 0.40 0.81 0.39 1.00 1.00
50% 0.91 0.50 0.92 0.49 1.00 1.00
95% 0.98 0.61 0.98 0.60 1.00 1.00

σh,l 5% 0.01 0.39 0.01 0.41 0.01 0.01
50% 0.03 0.72 0.03 0.75 0.01 0.01
95% 0.08 0.88 0.08 0.92 0.03 0.03

σh,s 5% 0.01 1.29 0.01 1.27 0.01 0.01
50% 0.03 1.75 0.04 1.72 0.02 0.03
95% 0.10 3.00 0.10 2.64 0.06 0.05

σh,c 5% 0.01 1.41 0.02 1.30 0.01 0.01
50% 0.12 2.00 0.09 1.78 0.03 0.03
95% 0.40 4.00 0.27 4.30 0.09 0.09

Notes: Parameters related to ht. Not applicable to DNS-C, RW-C, DNS-ME-SV and DNS-ME-RV. Estima-
tion sample is from January 1981 to November 2009.
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Table A-7 Posterior moments of parameters related to ht for ME-SV model

µh φh σ2
h

DNS-ME-SV DNS-ME-RV DNS-ME-SV DNS-ME-RV DNS-ME-SV DNS-ME-RV

y1 5% -4.80 -4.28 5% 0.91 0.91 5% 0.14 0.04
50% -3.61 -3.45 50% 0.95 0.95 50% 0.23 0.08
95% -2.50 -2.92 95% 0.99 0.98 95% 0.36 0.13

y2 5% -5.75 -5.79 5% 0.89 0.91 5% 0.03 0.01
50% -4.88 -5.03 50% 0.95 0.95 50% 0.07 0.03
95% -4.14 -4.62 95% 0.99 0.99 95% 0.14 0.06

y3 5% -6.28 -5.77 5% 0.53 0.88 5% 0.00 0.00
50% -5.48 -5.55 50% 0.96 0.93 50% 0.01 0.01
95% -4.96 -5.35 95% 1.00 0.98 95% 0.04 0.02

y4 5% -6.52 -5.60 5% 0.24 0.87 5% 0.00 0.00
50% -5.43 -5.43 50% 0.96 0.92 50% 0.01 0.01
95% -4.65 -5.26 95% 1.00 0.97 95% 0.02 0.01

y5 5% -7.89 -5.35 5% 0.95 0.86 5% 0.01 0.00
50% -5.40 -5.12 50% 0.98 0.92 50% 0.02 0.01
95% -4.15 -4.93 95% 1.00 0.97 95% 0.04 0.02

y6 5% -10.34 -5.69 5% 0.97 0.88 5% 0.00 0.01
50% -5.95 -5.39 50% 0.99 0.93 50% 0.01 0.02
95% -5.14 -5.14 95% 1.00 0.97 95% 0.02 0.04

y7 5% -9.71 -6.07 5% 0.97 0.89 5% 0.00 0.01
50% -6.16 -5.67 50% 0.99 0.94 50% 0.01 0.03
95% -5.46 -5.37 95% 1.00 0.98 95% 0.01 0.06

y8 5% -8.41 -6.01 5% 0.92 0.84 5% 0.00 0.00
50% -5.92 -5.85 50% 0.98 0.91 50% 0.01 0.01
95% -5.03 -5.68 95% 1.00 0.96 95% 0.01 0.02

y9 5% -7.06 -6.29 5% 0.93 0.87 5% 0.00 0.01
50% -6.11 -5.98 50% 0.97 0.93 50% 0.01 0.03
95% -5.63 -5.73 95% 1.00 0.97 95% 0.03 0.06

y10 5% -8.33 -5.89 5% 0.95 0.83 5% 0.00 0.00
50% -5.91 -5.71 50% 0.98 0.90 50% 0.01 0.01
95% -5.00 -5.56 95% 1.00 0.95 95% 0.01 0.02

y11 5% -7.80 -5.88 5% 0.95 0.86 5% 0.01 0.02
50% -5.53 -5.55 50% 0.98 0.92 50% 0.02 0.05
95% -0.82 -5.27 95% 1.00 0.96 95% 0.05 0.09

y12 5% -8.28 -5.68 5% 0.95 0.84 5% 0.00 0.01
50% -5.69 -5.50 50% 0.98 0.91 50% 0.01 0.01
95% -4.91 -5.31 95% 1.00 0.96 95% 0.02 0.04

y13 5% -8.00 -6.12 5% 0.95 0.88 5% 0.01 0.03
50% -5.48 -5.60 50% 0.99 0.94 50% 0.03 0.06
95% 0.85 -5.20 95% 1.00 0.98 95% 0.06 0.10

y14 5% -9.18 -6.51 5% 0.97 0.92 5% 0.01 0.03
50% -5.94 -5.77 50% 0.99 0.96 50% 0.02 0.05
95% -2.26 -5.14 95% 1.00 0.99 95% 0.04 0.08

y15 5% -8.72 -6.07 5% 0.96 0.88 5% 0.00 0.01
50% -5.95 -5.69 50% 0.99 0.93 50% 0.01 0.03
95% -2.15 -5.36 95% 1.00 0.98 95% 0.03 0.07

y16 5% -9.02 -6.04 5% 0.96 0.89 5% 0.01 0.03
50% -5.84 -5.42 50% 0.99 0.94 50% 0.01 0.06
95% -4.57 -4.92 95% 1.00 0.98 95% 0.04 0.11

y17 5% -6.53 -5.66 5% 0.93 0.91 5% 0.04 0.04
50% -5.02 -4.87 50% 0.97 0.95 50% 0.07 0.07
95% -3.06 -4.25 95% 1.00 0.99 95% 0.14 0.12

Notes: Parameters related to ht. For DNS-ME-SV and DNS-ME-RV. Estimation sample is from January
1981 to November 2009.
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E.3 Extracted factors (ft)

Figure A-1 Extracted factors

Level Factor

DNS-C Various specifications

Slope Factor

DNS-C Various specifications

Curvature Factor

DNS-C Various specifications

Notes: Left columns: Factors estimated from the DNS-C model with 80% credible intervals. Right column:
Estimated factors from the various specifications. Shaded bars on the right panel are NBER recession dates.
1) Factors are very similar to each other. 2) Factors are very accurately estimated. Estimation sample is
from January 1981 to November 2009.
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E.4 Relative importance (ratio in %) of variation between the

measurement error and ft.

Table A-8 Relative importance (ratio in %) of variation between the measurement error and
ft.

Maturity DNS-C DNS-SV DNS-RV DNS-ME-SV DNS-ME-RV

3 7.72 7.73 7.77 7.95 7.66
6 2.54 2.54 2.80 2.78 2.56
9 1.13 1.12 1.60 1.55 1.51
12 1.80 1.81 1.90 1.73 1.85
15 2.24 2.26 2.22 2.13 2.09
18 2.05 2.06 2.04 2.00 1.94
21 1.77 1.78 1.75 1.75 1.74
24 1.29 1.29 1.35 1.36 1.34
30 1.31 1.28 1.44 1.43 1.41
36 1.43 1.42 1.52 1.39 1.42
48 2.04 2.04 2.11 2.08 2.10
60 1.70 1.71 1.85 1.72 1.69
72 2.18 2.18 2.43 2.32 2.25
84 1.96 1.95 2.24 2.13 2.19
96 1.48 1.45 2.01 1.51 1.64
108 2.74 2.78 2.92 2.57 2.66
120 4.04 4.07 4.11 3.92 4.16

Notes: We calculate std(et)
std(ft)

∗ 100 where et is measurement error and ft is a vector level, slope, and curvature

factor. This table is to show that variation in the measurement equation is relatively smaller than variation
in the factor component. Sizes of variation from the measurement error is about 1% ∼ 8 % of the variation
from the factors. Mostly they are below 3% except 3 month and 10 year bond yields. This evidence supports
that time-varying volatility in the transition equation (factor equation) plays much larger role in prediction.
Calculated at the posterior median. Estimation sample is from January 1981 to November 2009.
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E.5 Model confidence set

Table A-9 Model Confidence Set (5%) Based on the log predictive score

Maturity List of Models

1-step-ahead prediction
3 DNS-RV
12 RW-RV DNS-RV
36 DNS-RV
60 DNS-SV DNS-RV RW-SV
120 DNS-RV RW-SV RW-RV DNS-SV

3-step-ahead prediction
3 RW-RV DNS-RV
12 DNS-SV RW-SV-RW RW-SV RW-RV DNS-RV
36 RW-C DNS-SV DNS-ME-RV DNS-ME-SV RW-SV-RW RW-SV RW-RV DNS-RV
60 DNS-SV-RW DNS-SV RW-C DNS-C RW-SV-RW DNS-ME-RV DNS-ME-SV RW-RV RW-SV DNS-RV
120 RW-RV DNS-ME-SV DNS-ME-RV RW-SV DNS-RV DNS-SV RW-SV-RW DNS-SV-RW

6-step-ahead prediction
3 DNS-SV DNS-ME-SV RW-SV DNS-ME-RV RW-RV DNS-RV
12 DNS-SV-RW DNS-SV DNS-C RW-C RW-SV-RW DNS-ME-SV RW-SV DNS-ME-RV RW-RV DNS-RV
36 DNS-SV-RW DNS-SV RW-SV-RW RW-SV DNS-C RW-C DNS-ME-SV DNS-ME-RV RW-RV DNS-RV
60 DNS-SV-RW RW-SV-RW DNS-SV RW-SV RW-C RW-RV DNS-C DNS-ME-RV DNS-ME-SV DNS-RV
120 RW-SV-RW DNS-C RW-SV DNS-SV-RW DNS-ME-RV DNS-ME-SV DNS-SV RW-RV DNS-RV

12-step-ahead prediction
3 RW-RV DNS-RV DNS-ME-SV DNS-C DNS-ME-RV
12 DNS-SV-RW DNS-SV RW-SV-RW RW-SV RW-RV RW-C DNS-RV DNS-C DNS-ME-SV DNS-ME-RV
36 DNS-SV-RW DNS-SV RW-SV-RW RW-SV RW-RV RW-C DNS-C DNS-RV DNS-ME-SV DNS-ME-RV
60 DNS-ME-SV RW-RV DNS-ME-RV DNS-RV
120 DNS-ME-RV DNS-ME-SV RW-SV RW-SV-RW DNS-SV-RW DNS-SV RW-RV DNS-RV

Notes: This table lists a subset of forecasting models that includes the best models (in terms of the log
predictive score) at the 5% confidence level. Specifically, we define the difference in the log predictive score
for model i and j as

dij,t = LPSi,t − LPSj,t

and define µij = E[dij,t]. Then, the set of best forecasts is defined as,

M∗ = {i ∈M : µij ≥ 0, ∀j ∈M}.

We follow Hansen et al. (2011) to construct the model confidence set. We construct p-values using the
stationary bootstrap with 10,000 replications and the average window length 12. Computation is based on
the MFE Toolbox provided by Kevin Sheppard.


